
Abstract – This paper is intended to present an assessment of the
experimental results of a previously proposed muscle conduction
velocity distribution (CVD) estimator. The performance of the
proposed technique was seriously deteriorated when applied to
experimental data. The causes for this decline were evaluated by
introducing real-world errors in the model parameters and
looking at how sensitive the estimator is to these. The simulation
results show the high sensitivity of the estimator to parameter
errors. The similitude found between the simulation results and
the CVD estimates obtained on experimental data helped
confirm this observation as well. Given the sensitivity observed
the proposed technique is not practical for muscle dimensions
such as those found in the biceps brachii.
Keywords – Conduction, propagation, velocity, CVD, EMG,
noninvasive, estimation.

I. INTRODUCTION

Noninvasive techniques for the estimation of conduction
velocity distribution (CVD) on human muscles can lead to
new possibilities for clinical assessment of muscular
pathologies. Efforts are currently directed to the development
of such tools [1][2]. However due to the constraints imposed
by the low frequency content of the electromyographic
(EMG) signal together with physiological issues related to
muscle geometry this task is a challenging one. This is true
particularly when the aim is to characterize a representative
part of the muscle motor unit population through a CVD
estimate.

II. METHOD

The technique used by the authors is a deconvolution
approach based on volume conductor modeling of the surface
EMG interference pattern [2]. It makes use of two correlation
functions computed from the surface EMG data recorded at
the skin surface with a bipolar configuration. A volume
conductor model of the signal that depends on different
parameters is built into the estimator. Some of these
parameters such as interelectrode spacing, which is a rather
accurate quantity, are determined by the recording
configuration. However, other parameters such as

1. Location of the recording electrodes with respect to the
innervation zone, and

2. Muscle geometry and thickness of the fat layer under
each recording channel,

are not known with certainty.

The setup shown in Figure 1 was used for experiments
and simulations. Two bipolar channels spaced by a distance
dch were aligned in the direction of the muscle fibers. As part
of the tests implemented through simulations, the distance
from the recording electrode arrangement to the middle of the

innervation zone was underestimated by 5, 10 and 20mm
during the CVD estimation. The power of the signals
recorded from channels X & Y can also differ from that
expected according to the assumption made on model
parameters mentioned in point 2. These differences in
channel powers convey differences in the relative amplitudes
of the MES auto and cross correlation functions RXX and RXY,
respectively. The effect that this has on the estimator
performance was evaluated by upsetting the auto-to-cross
amplitude ratio of the simulated signals by 5, 10 and 20%.

Figure 1. Disposition of two bipolar recording channels

The estimator performance was measured by means of the
average estimate error per bin which is given by
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where im̂  is the estimate of the relative number of active

fibers corresponding to velocity bin i, and mi is the actual
relative number of active fibers belonging to velocity bin i.

III. SIMULATIONS

Two channels, X & Y, using bipolar recording
configurations as shown in Figure 1 were simulated. The auto
correlation function RXX and the cross correlation function
RXY were generated and fed to the estimator. Table 1 shows
the MAEbin performance index for different combinations of
distance errors and auto-to-cross amplitude ratio errors. The
channel spacing used was dch = 39.5mm. The first row
presents the values obtained in the absence of errors.
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Average Estimate Error / Bin
(in % of the Average Number

of Active MUs per Bin)

Error in the
Location of

the
Innervation

Zone

Error in the
Relative

Amplitude of
Auto/Cross
Corr Fns Initial Estimate Filtered

Estimate
−− −− 70.6 % 13.6 %

10 mm −− 125.4 % 86.2 %
20 mm −− 109.2 % 95.8 %
10 mm 5 % 119.1 % 92.2 %
10 mm 10 % 123.5 % 99.6 %
10 mm 20  % 108.7 % 105.3 %
Table 1. Average CVD estimate errors per bin. Results correspond to

estimates obtained introducing errors in the location of the innervation zone
and/or errors in the relative power of the two channels. A channel spacing dch

= 39.5mm was used. Estimates were obtained over 16 velocity bins.

As an error is introduced the filtered estimate index goes
up from 13.6% in the first row to the 85-105% range. Figure
2 shows the CVD estimates obtained when a 10mm distance
error is combined with a 5% amplitude ratio error. The
estimated distributions present three significant components
around 3.4m/s, 4.0-4.5m/s and 2.0m/s which is significantly
large (see Figure 2) and is not present when there is no error
in the estimator parameters (see Figure 3).

Figure 2. Primary (wide bars) and filtered (narrow bars) CVD estimates.
Actual CVD used in the signal generation (curve). The distance from

recording electrodes to innervation zone is underestimated by 10mm. The
ratio of auto-to-cross correlation functions was upset by 5%. A channel

spacing dch = 39.5mm was used.

Figure 2 shows the CVD estimate corresponding to the 4th

row in Table 1. Figure 3 shows the CVD estimate
corresponding to the 1st row in Table 1, that is, the parameter
error free estimate. Two representations of the CVD estimate
are shown on both figures in correspondence with columns 3
& 4 of Table 1. It has been shown that the smoothed or low-
pass filtered estimate help decrease the variance of the
estimation [2]. It can also be appreciated that the estimator
error is smaller when the filtered estimate is used.
Nonetheless, the detriment suffered by the estimates as a
result of misjudging the location of the innervation zone by
10 mm is significant. The result is more degraded if

parameters affecting the signal power in as little as 5% are
misjudged as well.

Figure 3. CVD Estimates (bars) obtained for a parameter error free estimator.
The actual CVD used in the signal generation is represented by the curve.

The wide bars represent the initial estimate while the narrow bars represent
the filtered estimate. A channel spacing dch = 39.5mm was used.

IV. EXPERIMENTAL RESULTS

Two channels of surface EMG data were collected from
the biceps brachii during 1 minute of an isometric isotonic
contraction. The arrangement was located on one side of the
innervation zone and its axis was aligned parallel to the
muscle fibers as illustrated in Figure 1. A typical CVD
estimate obtained using dch = 39.5mm is shown in Figure 4. It
again shows relative wide gaps in the estimated distribution.
Only three significant components are present in the CVD
estimate. The middle one around 4m/s corresponds to the
value for the mean conduction velocity. The estimate also
displays two components located at the boundaries of the
estimation interval.

Figure 4. Primary (wide bars) and filtered (narrow bars) CVD estimates
obtained from experimental EMG data collected using dch = 39.5mm.



It was observed as part of this study that the CVD estimator
becomes less sensitive to errors in the model parameter as
channel spacing and signal bandwidth are increased. The
components shown in Figure 4 are sufficient for the
algorithm to converge in the case of the posed problem.
However, if a larger component population is to be obtained
for the CVD estimate through this method, characteristics
such as signal bandwidth and channel spacing need to be
significantly increased. Since increasing these two elements
are restricted by surface recording and muscle anatomy,
respectively, this represents a significant obstacle to surmount
when applying this type of noninvasive technique to human
muscles.

V. CONCLUSION

Since the range of errors used in the simulations is very
likely to be present in practice it is not surprising that the
CVD estimate obtained from experimental data is seriously
affected. It is apparent that the velocity component estimated
at 2m/s in Figure 4 is erroneous. Such a spread in the

disposition of the estimated velocity components, which
suffices for the solution technique to converge, is not
adequate since the velocity resolution obtained is extremely
poor. One way to improve this resolution problem would be
to considerably increase the channel spacing. However, this is
not possible for the dimensions found in the human biceps
brachii muscle if the arrangement is to be kept in one side of
the innervation zone.
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